• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforcement learning as multiobjective optimization benchmarks: Problem formulation and performance assessment

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S221065022400230X-main.pdf (1.852Mb)
    التاريخ
    2024
    المؤلف
    Ajani, Oladayo S.
    Ivan, Dzeuban Fenyom
    Darlan, Daison
    Suganthan, P.N.
    Gao, Kaizhou
    Mallipeddi, Rammohan
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The successful deployment of Deep learning in several challenging tasks has been translated into complex control problems from different domains through Deep Reinforcement Learning (DRL). Although DRL has been extensively formulated and solved as single-objective problems, nearly all real-world RL problems often feature two or more conflicting objectives, where the goal is to obtain a high-quality and diverse set of optimal policies for different objective preferences. Consequently, the development of Multi-Objective Deep Reinforcement Learning (MODRL) algorithms has gained a lot of traction in the literature. Generally, Evolutionary Algorithms (EAs) have been demonstrated to be scalable alternatives to the classical DRL paradigms when formulated as an optimization problem. Hence it is reasonable to employ Multi-objective Evolutionary Algorithms (MOEAs) to handle MODRL tasks. However, there are several factors constraining the progress of research along this line: first, there is a lack of a general problem formulation of MODRL tasks from an optimization perspective; second, there exist several challenges in performing benchmark assessments of MOEAs for MODRL problems. To overcome these limitations: (i) we present a formulation of MODRL tasks as general multi-objective optimization problems and analyze their complex characteristics from an optimization perspective; (ii) we present an end-to-end framework, termed DRLXBench, to generate MODRL benchmark test problems for seamless running of MOEAs (iii) we propose a test suite comprising of 12 MODRL problems with different characteristics such as many-objectives, degenerated Pareto fronts, concave and convex optimization problems, etc. (iv) Finally, we present and discuss baseline results on the proposed test problems using seven representative MOEAs. 2024 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2024.101692
    http://hdl.handle.net/10576/62216
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video