• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-powered malware detection with Differential Privacy for zero trust security in Internet of Things networks

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1570870524001343-main.pdf (2.475Mb)
    التاريخ
    2024
    المؤلف
    Faria, Nawshin
    Unal, Devrim
    Hammoudeh, Mohammad
    Suganthan, Ponnuthurai N.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The widespread usage of Android-powered devices in the Internet of Things (IoT) makes them susceptible to evolving cybersecurity threats. Most healthcare devices in IoT networks, such as smart watches, smart thermometers, biosensors, and more, are powered by the Android operating system, where preserving the privacy of user-sensitive data is of utmost importance. Detecting Android malware is thus vital for protecting sensitive information and ensuring the reliability of IoT networks. This article focuses on AI-enabled Android malware detection for improving zero trust security in IoT networks, which requires Android applications to be verified and authenticated before providing access to network resources. The zero trust security model requires strict identity verification for every entity trying to access resources on a private network, regardless of whether they are inside or outside the network perimeter. Our proposed solution, DP-RFECV-FNN, an innovative approach to Android malware detection that employs Differential Privacy (DP) within a Feedforward Neural Network (FNN) designed for IoT networks under the zero trust model. By integrating DP, we ensure the confidentiality of data during the detection process, setting a new standard for privacy in cybersecurity solutions. By combining the strengths of DP and zero trust security with the powerful learning capacity of the FNN, DP-RFECV-FNN demonstrates the ability to identify both known and novel malware types and achieves higher accuracy while maintaining strict privacy controls compared with recent papers. DP-RFECVFNN achieves an accuracy ranging from 97.78% to 99.21% while utilizing static features and 93.49% to 94.36% for dynamic features of Android applications to detect whether it is malware or benign. These results are achieved under varying privacy budgets, ranging from 𝜖 = 0.1 to 𝜖 = 1.0. Furthermore, our proposed feature selection pipeline enables us to outperform the state-of-the-art by significantly reducing the number of selected features and training time while improving accuracy. To the best of our knowledge, this is the first work to categorize Android malware based on both static and dynamic features through a privacy-preserving neural network model.
    DOI/handle
    http://dx.doi.org/10.1016/j.adhoc.2024.103523
    http://hdl.handle.net/10576/62218
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video