• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Large-scale data classification based on the integrated fusion of fuzzy learning and graph neural network

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1566253523003834-main.pdf (2.413Mb)
    التاريخ
    2024
    المؤلف
    Snášel, Václav
    Štěpnička, Martin
    Ojha, Varun
    Suganthan, Ponnuthurai Nagaratnam
    Gao, Ruobin
    Kong, Lingping
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Deep learning and fuzzy models provide powerful and practical techniques for solving large-scale deep-learning tasks. The fusion technique on deep learning and fuzzy system are generally classified into ensemble and integrated modes and materializes in information fusion, model fusion, and feature fusion. In an ensemble-based fusion, the fuzzy model either acts as an activation function or is operated as a separate process aggregating/preprocessing the information. Some early attempts in the field have successfully fused deep neural networks and fuzzy modeling concepts in ensemble mode. However, no effective attempts were made to fuse fuzzy models as an integrated feature-level fusion learning with graph neural networks (GNNs). This is mainly due to two challenges related to this fusion: (1) the number of fuzzy rules grows exponentially with the number of features that causes computational inefficiency, and (2) the solution space created by this fusion of fuzzy rules becomes complex due to multiple regression relations between inputs and outputs. Additionally, a simple linear regression at the output space would not be sufficient to model deep learning tasks. Therefore, this paper addresses these challenges by proposing a feature-level fusion method to fuse deep learning and fuzzy modeling where the latter technique is for integrated feature learning, called fuzzy forest graph neural network (FuzzyGNN), which creates a fuzzy learning forest fusing the linear graph transformers for deep learning tasks. We conducted experiments on fourteen machine learning datasets to test and validate the efficiency of the proposed FuzzyGNN model. Compared to state-of-the-art methods, our algorithm achieves the best results on four out of five machine learning datasets. The source code will be available at https://github.com/lingping-fuzzy/, https://github.com/vojha-code and https://github.com/P-N-Suganthan. 2023 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.inffus.2023.102067
    http://hdl.handle.net/10576/62221
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video