• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Accurate parameters extraction of photovoltaic models with multi-strategy gaining-sharing knowledge-based algorithm

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S0020025524005401.pdf (7.323Mb)
    Date
    2024
    Author
    Guojiang, Xiong
    Gu, Zaiyu
    Mohamed, Ali Wagdy
    Bouchekara, Houssem R.E.H.
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    The determination of photovoltaic (PV) model parameters has essential theoretical and practical significance for the performance evaluation, power monitoring, and power generation efficiency calculation of PV systems. In this paper, a multi-strategy gaining-sharing knowledge-based algorithm (MSGSK) is developed to determine these parameters. In our previous work, it has been demonstrated that gaining-sharing knowledge-based algorithm (GSK) is well suited for solving the concerned problem. To enhance its performance, a parameter adjustment strategy is developed to adjust the knowledge rate and knowledge ratio of GSK. Besides, a backtracking differential mutation strategy by combining the mutation scheme of differential evolution and the updating scheme of backtracking search optimization algorithm is developed to enrich the population diversity. Furthermore, a strategy selection mechanism is introduced to integrate the former two strategies to balance exploration and exploitation in different stages of the evolutionary process. The suggested MSGSK algorithm is applied to five PV cases (SDM, DDM, Photowatt-PW201, STM6-40/36, and STP6-120/36). From the experimental data, it can be observed that MSGSK extracts the PV model parameters more precisely than the basic GSK. Furthermore, it exhibits faster convergence speed and higher accuracy compared to other advanced algorithms found in the literature. 2024 Elsevier Inc.
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2024.120627
    http://hdl.handle.net/10576/62225
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video