Accurate parameters extraction of photovoltaic models with multi-strategy gaining-sharing knowledge-based algorithm
المؤلف | Guojiang, Xiong |
المؤلف | Gu, Zaiyu |
المؤلف | Mohamed, Ali Wagdy |
المؤلف | Bouchekara, Houssem R.E.H. |
المؤلف | Suganthan, Ponnuthurai Nagaratnam |
تاريخ الإتاحة | 2025-01-19T10:05:06Z |
تاريخ النشر | 2024 |
اسم المنشور | Information Sciences |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.ins.2024.120627 |
الرقم المعياري الدولي للكتاب | 200255 |
الملخص | The determination of photovoltaic (PV) model parameters has essential theoretical and practical significance for the performance evaluation, power monitoring, and power generation efficiency calculation of PV systems. In this paper, a multi-strategy gaining-sharing knowledge-based algorithm (MSGSK) is developed to determine these parameters. In our previous work, it has been demonstrated that gaining-sharing knowledge-based algorithm (GSK) is well suited for solving the concerned problem. To enhance its performance, a parameter adjustment strategy is developed to adjust the knowledge rate and knowledge ratio of GSK. Besides, a backtracking differential mutation strategy by combining the mutation scheme of differential evolution and the updating scheme of backtracking search optimization algorithm is developed to enrich the population diversity. Furthermore, a strategy selection mechanism is introduced to integrate the former two strategies to balance exploration and exploitation in different stages of the evolutionary process. The suggested MSGSK algorithm is applied to five PV cases (SDM, DDM, Photowatt-PW201, STM6-40/36, and STP6-120/36). From the experimental data, it can be observed that MSGSK extracts the PV model parameters more precisely than the basic GSK. Furthermore, it exhibits faster convergence speed and higher accuracy compared to other advanced algorithms found in the literature. 2024 Elsevier Inc. |
راعي المشروع | The authors would like to thank the editor and the reviewers for their constructive comments. This research was funded by the National Natural Science Foundation of China, grant number 52167007 and 52367006, the Natural Science Foundation of Guizhou Province, grant number QiankeheBasic-ZK[2022]General121, and the Innovation Foundation of Guizhou University Institute of Engineering Investigation & Design Co. Ltd. China, grant number GuiDaKanCha[2022]03. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Backtracking search optimization Differential evolution Gaining-sharing knowledge-based algorithm Parameter adjustment strategy Parameter identification Photovoltaic cell |
النوع | Article |
رقم المجلد | 670 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الشبكات وخدمات البنية التحتية للمعلومات والبيانات [142 items ]