• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    S1568494623007329.pdf (2.204Mb)
    التاريخ
    2023
    المؤلف
    Liang, Wang
    Gao, Kaizhou
    Lin, Zhongjie
    Huang, Wuze
    Suganthan, Ponnuthurai Nagaratnam
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    An urban traffic light scheduling problem (UTLSP) is studied by using problem feature based meta-heuristics with Q-learning. The goal is to minimize the network-wise total delay time within a time window by finding a high-quality schedule of traffic lights. First, a dynamic flow model is used to describe the UTLSP in a scheduling framework. Second, four improved meta-heuristics combining Q-learning are proposed, including harmony search (HS), water cycle algorithm (WCA), Jaya, and artificial bee colony (ABC) algorithms. Five problem feature based local search operators are constructed. During the iterative process, Q-learning is employed to select the local search operators with strong competitiveness. Two ensemble strategies are proposed to combine meta-heuristics and Q-learning. Finally, experiments are conducted based on real traffic data. The performance of the improved meta-heuristics with Q-learning is verified by solving eighteen cases with different scales. Numerical results and comparisons show that the proposed algorithms have statistical improvements over their peers. The proposed feature-based ABC with Q-learning has the strongest competitiveness among all compared ones. 2023 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.asoc.2023.110714
    http://hdl.handle.net/10576/62236
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video