• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

    عرض / فتح
    Problem-Specific_Knowledge_Based_Multi-Objective_Meta-Heuristics_Combined_Q-Learning_for_Scheduling_Urban_Traffic_Lights_With_Carbon_Emissions.pdf (8.416Mb)
    التاريخ
    2024
    المؤلف
    Lin, Zhongjie
    Gao, Kaizhou
    Wu, Naiqi
    Nagaratnam Suganthan, Ponnuthurai
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA<inline-formula> <tex-math notation="LaTeX">$+$</tex-math> </inline-formula>QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2024.3397077
    http://hdl.handle.net/10576/62259
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video