• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SFE: A Simple, Fast, and Efficient Feature Selection Algorithm for High-Dimensional Data

    View/Open
    SFE_A_Simple_Fast_and_Efficient_Feature_Selection_Algorithm_for_High-Dimensional_Data.pdf (3.783Mb)
    Date
    2023
    Author
    Ahadzadeh, Behrouz
    Abdar, Moloud
    Safara, Fatemeh
    Khosravi, Abbas
    Menhaj, Mohammad Bagher
    Suganthan, Ponnuthurai Nagaratnam
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this article, a new feature selection (FS) algorithm, called simple, fast, and efficient (SFE), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using a search agent and two operators: 1) nonselection and 2) selection. It comprises two phases: 1) exploration and 2) exploitation. In the exploration phase, the nonselection operator performs a global search in the entire problem search space for the irrelevant, redundant, trivial, and noisy features and changes the status of the features from selected mode to nonselected mode. In the exploitation phase, the selection operator searches the problem search space for the features with a high impact on the classification results and changes the status of the features from nonselected mode to selected mode. The proposed SFE is successful in FS from high-dimensional datasets. However, after reducing the dimensionality of a dataset, its performance cannot be increased significantly. In these situations, an evolutionary computational method could be used to find a more efficient subset of features in the new and reduced search space. To overcome this issue, this article proposes a hybrid algorithm, SFE-PSO (particle swarm optimization) to find an optimal feature subset. The efficiency and effectiveness of the SFE and the SFE-PSO for FS are compared on 40 high-dimensional datasets. Their performances were compared with six recently proposed FS algorithms. The results obtained indicate that the two proposed algorithms significantly outperform the other algorithms and can be used as efficient and effective algorithms in selecting features from high-dimensional datasets.
    DOI/handle
    http://dx.doi.org/10.1109/TEVC.2023.3238420
    http://hdl.handle.net/10576/62264
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video