• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neuro-Fuzzy Random Vector Functional Link Neural Network for Classification and Regression Problems

    Thumbnail
    عرض / فتح
    Neuro-Fuzzy_Random_Vector_Functional_Link_Neural_Network_for_Classification_and_Regression_Problems.pdf (2.872Mb)
    التاريخ
    2024
    المؤلف
    Sajid, M.
    Malik, A. K.
    Tanveer, M.
    Suganthan, Ponnuthurai N.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The random vector functional link (RVFL) neural network has shown the potential to overcome traditional artificial neural networks' limitations, such as substantial time consumption and the emergence of suboptimal solutions. However, RVFL struggles to provide comprehensive insights into its decision-making processes. We propose the Neuro-fuzzy RVFL (NF-RVFL) model by combining RVFL with neuro-fuzzy system. The proposed NF-RVFL model takes humanlike decisions based on the IF-THEN approach and enhances its transparency in decision-making. Within this framework, input features undergo a fuzzification process as they traverse the fuzzy layer. The resulting fuzzified features then navigate a hidden layer through random projection as well as yielding defuzzified values via defuzzification. The defuzzified values, hidden layer outputs and original input features collectively contribute to the output prediction process. The proposed NF-RVFL model employs three distinct clustering methods to establish fuzzy layer centers: randomly initialized centers (referred to as R-means), K-means clustering centers, and fuzzy C-means clustering centers. This approach generates three distinct model variations, namely NF-RVFL-R, NF-RVFL-K and NF-RVFL-C, each producing a diverse set of fuzzified and defuzzified samples. Our research involves experiments on various UCI benchmark datasets, covering binary, multiclass classification, and regression tasks. The statistical tests and comprehensive experimental analyses consistently show that all variations of the proposed NF-RVFL model outperform baseline models, highlighting their generalization capabilities. The proposed NF-RVFL models show the generic nature by being adeptly applicable and excelling in regression as well as classification tasks.
    DOI/handle
    http://dx.doi.org/10.1109/TFUZZ.2024.3359652
    http://hdl.handle.net/10576/62278
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video