عرض بسيط للتسجيلة

المؤلفSajid, M.
المؤلفTanveer, M.
المؤلفSuganthan, Ponnuthurai N.
تاريخ الإتاحة2025-01-20T05:12:03Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Fuzzy Systems
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TFUZZ.2024.3411614
الرقم المعياري الدولي للكتاب10636706
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62279
الملخصThe ensemble deep random vector functional link (edRVFL) neural network has demonstrated the ability to address the limitations of conventional artificial neural networks. However, since edRVFL generates features for its hidden layers through random projection, it can potentially lose intricate features or fail to capture certain non-linear features in its base models (hidden layers). To enhance the feature learning capabilities of edRVFL, we propose a novel edRVFL based on fuzzy inference system (edRVFL-FIS). The proposed edRVFL-FIS leverages the capabilities of two emerging domains, namely deep learning and ensemble approaches, with the intrinsic IF-THEN properties of fuzzy inference system (FIS) and produces rich feature representation to train the ensemble model. Each base model of the proposed edRVFL-FIS encompasses two key feature augmentation components: a) unsupervised fuzzy layer features and b) supervised defuzzified features. The edRVFL-FIS model incorporates diverse clustering methods (R-means, K-means, Fuzzy C-means) to establish fuzzy layer rules, resulting in three model variations (edRVFL-FIS-R, edRVFL-FIS-K, edRVFL-FIS-C) with distinct fuzzified features and defuzzified features. Within the framework of edRVFL-FIS, each base model utilizes the original, hidden layer and defuzzified features to make predictions. Experimental results, statistical tests, discussions and analyses conducted across UCI and NDC datasets consistently demonstrate the superior performance of all variations of the proposed edRVFL-FIS model over baseline models.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBig Data
Brain modeling
Computational modeling
Deep Learning
Deep learning
Ensemble Deep RVFL
Ensemble Learning
Fuzzy Inference System
Fuzzy systems
Mathematical models
Random Vector Functional Link (RVFL) Network
Training
Vectors
العنوانEnsemble Deep Random Vector Functional Link Neural Network Based on Fuzzy Inference System
النوعArticle
الصفحات1-12
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة