• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية العلوم الصحية
  • التغذية البشرية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية العلوم الصحية
  • التغذية البشرية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determinants and prediction of hypertension among Chinese middle-aged and elderly adults with diabetes: A machine learning approach

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2405844024141552-main.pdf (1.496Mb)
    التاريخ
    2024
    المؤلف
    Mao, Lijun
    Lin, Luotao
    Shi, Zumin
    Song, Hualing
    Zhao, Hailei
    Xu, Xianglong
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Objective: Multimorbidity, particularly diabetes combined with hypertension (DCH), is a significant public health concern. Currently, there is a gap in research utilizing machine learning (ML) algorithms to predict hypertension risk in Chinese middle-aged and elderly diabetic patients, and gender differences in DCH comorbidity patterns remain unclear. We aimed to use ML algorithms to predict DCH and identify its determinants among middle-aged and elderly diabetic patients in China. Study design: Cross-sectional study. Methods: Data were collected on 2775 adults with diabetes aged ?45 years from the 2015 China Health and Retirement Longitudinal Study. We employed nine ML algorithms to develop prediction models for DCH. The performance of these models was evaluated using the area under the curve (AUC). Additionally, we conducted variable importance analysis to identify key determinants. Results: Our results showed that the best prediction models for the overall population, men, and women were extreme gradient boosting (AUC = 0.728), light gradient boosting machine (AUC = 0.734), and random forest (AUC = 0.737), respectively. Age, waist circumference, body mass index, creatinine level, triglycerides, taking Western medicine, high-density lipoprotein cholesterol, blood urea nitrogen, total cholesterol, low-density lipoprotein cholesterol, and sleep disorders were identified as common important predictors by all three populations. Conclusions: ML algorithms showed accurate predictive capabilities for DCH. Overall, non-linear ML models outperformed traditional logistic regression for predicting DCH. DCH predictions exhibited variations in predictors and model accuracy by gender. These findings could help identify DCH early and inform the development of personalized intervention strategies.
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2024.e38124
    http://hdl.handle.net/10576/62326
    المجموعات
    • التغذية البشرية [‎444‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video