• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز المواد المتقدمة
  • الأبحاث
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Method for Detecting the Fatigue Using Automated Deep Learning Techniques for Medical Imaging Applications

    عرض / فتح
    s11277-024-11102-6.pdf (1.927Mb)
    التاريخ
    2024
    المؤلف
    Gnanadesigan, Naveen Sundar
    Lincoln, Grace Angela Abraham
    Dhanasegar, Narmadha
    Muthusamy, Suresh
    Kannan, Deeba
    Balasubramanian, Surendiran
    Bacanin, Nebojsa
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In the human race, Fatigue may contribute to a decline in efficiency. Fatigue is a risk factor for health and a component of quality degradation. The effects of Fatigue include sleep disorders, depression, and worry, all of which can lead to life-threatening issues. This project uses machine learning and deep learning techniques to identify a person's degree of Fatigue and its effects. The developed deep learning network can accurately distinguish between normal and exhausted states. This detection device uses physiological characteristics to guarantee high detection rates and accuracy. The project aims to recognize fatigue levels by examining the features extracted from the batch of images and classifying them into their respective class labels, such as Alert, Non-Vigilant, and Fatigued. To implement the detection procedures using deep structured learning that will yield very accurate image recognition and classification results, a large-scale image dataset is transported through efficient algorithm strategies and is processed to transform the data by labelling the patterns, tracking the correlations, and producing supreme results. The images will be diagnosed by employing the pre-trained models of the Convolutional Neural Networks (CNN), convolving through the hidden layers, applying the filters, and sharing the weights. Alex Net, Resnet50, and MobilenetV2 are the potential classifiers that will expand, filter, train, compress, and test through the neurons of the subjects. The layers and the non-linear functionalities are designed in the wake of the structured embedding of the model to deliver efficient metrics. The proposal offers the best accuracy for the established MobilenetV2 model with 99.8% accuracy and validates it with high-performance results.
    DOI/handle
    http://dx.doi.org/10.1007/s11277-024-11102-6
    http://hdl.handle.net/10576/63024
    المجموعات
    • الأبحاث [‎1633‎ items ]
    • الهندسة الميكانيكية والصناعية [‎1507‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video