• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0306261924006391-main.pdf (3.480Mb)
    التاريخ
    2024
    المؤلف
    Irani, Fatemeh Negar
    Soleimani, Mohammadjavad
    Yadegar, Meysam
    Meskin, Nader
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The gas turbine engine is a predominant prime mover in the transport and energy sectors, and ensuring its reliable operation holds paramount significance. While intelligent fault diagnosis (FD) approaches have seen successful advancements within the gas turbine FD landscape, many existing methods operate under the assumption of identical health states during both data collection and the FD process. Moreover, most previous studies have overlooked the diagnosis of both sensors and actuators. Another critical challenge lies in isolating simultaneous and multiple faults and providing compromising FD performance, especially in the face of continued system performance degradation. Aiming at these problems, this study develops a novel unsupervised data-driven FD strategy based on leveraging the potential of transfer learning and the Koopman operator. A deep neural network-based transfer learning framework is proposed for realizing a precise adaptive linear model called the deep transfer linear (DTL) model enabling reliable prediction of the system's behavior in various situations and designing structured fault residuals. To this end, a deep neural network framework is used to obtain a precise Koopman model realization using the richly collected data in the source domain. Subsequently, the realized model is fine-tuned for the target domains associated with the degraded system, mitigating the adverse effects of domain shift and addressing the rich data scarcity problem in the target domain. In addition, the dedicated and generalized residual sets are designed and generated employing the geometric approach for fault isolation and a decision-making analysis is developed to diagnose simultaneous faults. The reliability of the proposed strategy is demonstrated through various experiments in the presence of noise and performance degradation, and a comparative performance analysis is conducted between the proposed strategy and another data-driven method showcasing the superiority of the proposed approach.
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2024.123256
    http://hdl.handle.net/10576/63138
    المجموعات
    • الهندسة الكهربائية [‎2848‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video