• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352152X20317254-main.pdf (4.271Mb)
    Date
    2021
    Author
    Farayi, Musharavati
    Khanmohammadi, Shoaib
    Rahmani, Mohammad
    Khanmohammadi, Saber
    Metadata
    Show full item record
    Abstract
    Current study represents the thermodynamic modeling and exergy analysis of a compressed air energy storage system boosted with thermoelectric generator (CAES/TEG). To evaluate the studied system, a comparative analysis between compressed air energy storage system (CAES) with CAES/TEG has been done. Exergy, a powerful tool for analyzing energy conversion systems, is employed to determine the exergy destruction rate and exergy efficiency of the system as well as different related components. The results of exergy analysis indicates that the wind turbine with 35.28 kW (44.81% of total exergy destruction rate) has the highest exergy destruction rate and after that in the second and third places are combustion chamber and cavern. Findings indicate that with adding thermoelectric modules to the CAES system, the output power of Rankine cycle and organic Rankine cycle increase about 1.16 kW and 0.959 kW in comparison with CAES system, which these changes lead to increasing the net output power of the system in CAES/TEG system from 33.59 kW to 35.71 kW compare with CAES. Moreover, the influences of main parameters such as compressor mass flow rate, compressor pressure ratio, and combustion chamber outlet temperature and wind speed on the CAES/TEG performance are investigated.
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2020.101888
    http://hdl.handle.net/10576/63174
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video