عرض بسيط للتسجيلة

المؤلفAhmad, Zafar
المؤلفKhan, Muhammad Salman
المؤلفChowdhury, Muhammad E.H.
المؤلفZughaier, Susu
المؤلفIbrahim, Wanis Hamad
تاريخ الإتاحة2025-03-03T07:10:04Z
تاريخ النشر2024
اسم المنشورEuropean Signal Processing Conference
المصدرScopus
المعرّفhttp://dx.doi.org/10.23919/eusipco63174.2024.10715037
الرقم المعياري الدولي للكتاب22195491
معرّف المصادر الموحدhttp://hdl.handle.net/10576/63393
الملخصThis study combines 1D CNN with advanced signal processing to enhance heart sound classification, presenting three key contributions. Initially, we used a pitch-shifting technique to expand the dataset by altering high-frequency components precisely, ensuring the preservation of vital information. Next, a signal normalization technique is deployed, equalizing signal lengths for uniform analysis across all samples. Utilizing 1D CNN and Mel-frequency cepstral coefficients (MFCCs) for feature extraction, our approach achieves notable classification accuracy, with results showing up to 99.57% accuracy, 99.80% specificity, 99.22% sensitivity, and a 99.22% F1 score. These developments not only advance the precision of heart sound classifications but also expand the potential for wider clinical applications, establishing a new benchmark in tele auscultation.
راعي المشروعThis work is supported by Qatar University QUHI-CENG-23/24-216. The findings achieved herein are solely the responsibility of the authors.
اللغةen
الناشرEuropean Signal Processing Conference, EUSIPCO
الموضوع1D CNN
heart sound classification
Mel-frequency cepstral coefficients
Pitch-shifting
Tele-Auscultation
العنوانPhonocardiogram classification based on 1D CNN with pitch-shifting and signal uniformity techniques
النوعConference
الصفحات1536-1540
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة