• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-based techniques on edge devices to optimize energy efficiency in m-Health applications

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    B978-0-12-819045-6.00001-7.pdf (2.527Mb)
    التاريخ
    2020
    المؤلف
    Al-Marridi, Abeer
    Mohamed, Amr
    Erbad, Aiman
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The fast increase in the number of patients who need continuous monitoring by caregivers and the inequality between the number of patients compared with the number of doctors cause a burden for both doctors and patients. This one-to-one relationship poses a real scalability challenge in the healthcare systems. Resolving the problem by exploiting the fast developments in the fields of sensors, mobile phones, and wireless technologies to improve health systems is a critical approach. M-Health system accommodates the use of an edge device to send medical data over the wireless network toward the m-Health center to diagnose and control the case of the patient as fast as possible. However, the delivery of the substantial medical data is constrained by two factors, the wireless bandwidth provisioned from the network, as well as the energy consumption since edge devices limited to energy sources. As a result, implementing artificial intelligence (0) techniques at the edge devices before transmitting will enhance the overall energy efficiency of the m-Health system. Deep learning can be used on medical data to facilitate data exchange and summarization. This chapter will introduce mobile and smart health, edge computing, and different smart preprocessing techniques using AI and specifically deep neural networks to facilitate the transmission of the huge medical data from the edge devices while ensuring the optimization of energy efficiency.
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-12-819045-6.00001-7
    http://hdl.handle.net/10576/63828
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video