• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An innovative twin-technology solar system design for electricity production

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484723015512-main.pdf (3.307Mb)
    Date
    2024-06-30
    Author
    Abdelsalam, Emad
    Almomani, Fares
    Ibrahim, Shadwa
    Metadata
    Show full item record
    Abstract
    Traditional solar updraft power plants work during the daytime as it is dependent on solar radiation to generate electricity. Hence, energy productivity, efficiency, and performance are limited. This work presents a novel attempt to increase the productivity of a traditional solar updraft system by combining it with a downdraft technology in one system, the Twin-Technology Solar System (TTSS). The TTSS comprises two co-centric inner and external solar towers, turbines, water sprinklers, and a collector. The inner tower works as a traditional solar updraft system, where the air is heated under the collector due to irradiance and then moved up the chimney due to the pressure column. While the external tower creates a downdraft wind by spraying water at the hot ambient air at the top of the tower. The hot air instantly absorbs the water and descends the tower to interact with the turbines at the bottom to produce electricity. This mode is independent of solar irradiance and can operate day and night. Hence, the TTSS generates electricity, daytime and night. A mathematical simulation model was developed based on the proposed system's energy and mass balance equations to assess performance. The TTSS generated 752,763 kWh of electricity annually, 2.14 folds higher than a traditional solar updraft system. Consequently, a reduction of 677 tons of CO2 was achieved with production. The design is suitable for deployment in hot and dry weather areas, such as remote villages and deserts. Future work will investigate introducing other technologies to boost the TTSS performance.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484723015512
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.11.027
    http://hdl.handle.net/10576/65720
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video