• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water

    Thumbnail
    View/Open
    sustainability-15-02729.pdf (3.052Mb)
    Date
    2023
    Author
    Abdelsalam, Emad
    Almomani, Fares
    Ibrahim, Shadwa
    Kafiah, Feras
    Jamjoum, Mohammad
    Alkasrawi, Malek
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The classical solar chimney offers passive electricity and water production at a low operating cost. However, the solar chimney suffers from high capital cost and low energy output density per construction area. The high capital investment increases the levelized cost of energy (LCOE), making the design less economically competitive versus other solar technologies. This work presents a new noteworthy solar chimney design for high energy density and maximizing water production. This was achieved by integrating a cooling tower with the solar chimney and optimizing the operating mood. The new design operated day and night as a hybrid solar double-chimney power plant (HSDCPP) for continuous electricity and water production. During the daytime, the HSDCPP operated as a cooling tower and solar chimney, while during the night, it operated as a cooling tower. The annual energy output from the cooling towers and solar chimney (i.e., the HSDCPP) totaled 1,457,423 kWh. The annual energy production from the cooling towers alone was 1,077,134 kWh, while the solar chimney produced 380,289 kWh. The annual energy production of the HSDCPP was ~3.83-fold greater than that of a traditional solar chimney (380,289 kWh). Furthermore, the HSDCPP produced 172,344 tons of fresh water per year, compared with zero tons in a traditional solar chimney. This led to lower overall capital expenditures maximizing energy production and lower LCOE.
    DOI/handle
    http://dx.doi.org/10.3390/su15032729
    http://hdl.handle.net/10576/65743
    Collections
    • Chemical Engineering [‎1247‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video