• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Medisure: Towards Assuring Machine Learning-Based Medical Image Classifiers Using Mixup Boundary Analysis

    عرض / فتح
    Medisure_Towards_Assuring_Machine_Learning-Based_Medical_Image_Classifiers_Using_Mixup_Boundary_Analysis.pdf (2.283Mb)
    التاريخ
    2024
    المؤلف
    Byfield, Adam
    Poulett, William
    Wallace, Ben
    Jose, Anusha
    Tyagi, Shatakshi
    Shembekar, Smita
    Qayyum, Adnan
    Qadir, Junaid
    Bilal, Muhammad
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Machine learning (ML) models are becoming integral in healthcare technologies, necessitating formal assurance methods to ensure their safety, fairness, robustness, and trustworthiness. However, these models are inherently error-prone, posing risks to patient health and potentially causing irreparable harm when deployed in clinics. Traditional software assurance techniques, designed for fixed code, are not directly applicable to ML models, which adapt and learn from curated datasets during training. Thus, there is an urgent need to adapt established software assurance principles such as boundary testing with synthetic data. To bridge this gap and enable objective assessment of ML models in real-world clinical settings, we propose Mix-Up Boundary Analysis (MUBA), a novel technique facilitating the evaluation of image classifiers in terms of prediction fairness. We evaluated MUBA using brain tumour and breast cancer classification tasks and achieved promising results. This research underscores the importance of adapting traditional assurance principles to assess ML models, ultimately enhancing the safety and reliability of healthcare technologies. Our code is available at https: //github.com/willpoulett/MUBA_pipeline.
    DOI/handle
    http://dx.doi.org/10.1109/ISBI56570.2024.10635870
    http://hdl.handle.net/10576/66054
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Deep Reinforcement Learning for Autonomous Navigation on Duckietown Platform: Evaluation of Adversarial Robustness 

      Hosseini, Abdullah; Houti, Saeid; Qadir, Junaid ( IEEE , 2023 , Conference paper)
      Self-driving cars have gained widespread attention in recent years due to their potential to revolutionize the transportation industry. However, their success critically depends on the ability of reinforcement learning ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video