عرض بسيط للتسجيلة

المؤلفByfield, Adam
المؤلفPoulett, William
المؤلفWallace, Ben
المؤلفJose, Anusha
المؤلفTyagi, Shatakshi
المؤلفShembekar, Smita
المؤلفQayyum, Adnan
المؤلفQadir, Junaid
المؤلفBilal, Muhammad
تاريخ الإتاحة2025-07-08T03:58:08Z
تاريخ النشر2024
اسم المنشورProceedings - International Symposium on Biomedical Imaging
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ISBI56570.2024.10635870
الترقيم الدولي الموحد للكتاب 979-835031333-8
الرقم المعياري الدولي للكتاب19457928
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66054
الملخصMachine learning (ML) models are becoming integral in healthcare technologies, necessitating formal assurance methods to ensure their safety, fairness, robustness, and trustworthiness. However, these models are inherently error-prone, posing risks to patient health and potentially causing irreparable harm when deployed in clinics. Traditional software assurance techniques, designed for fixed code, are not directly applicable to ML models, which adapt and learn from curated datasets during training. Thus, there is an urgent need to adapt established software assurance principles such as boundary testing with synthetic data. To bridge this gap and enable objective assessment of ML models in real-world clinical settings, we propose Mix-Up Boundary Analysis (MUBA), a novel technique facilitating the evaluation of image classifiers in terms of prediction fairness. We evaluated MUBA using brain tumour and breast cancer classification tasks and achieved promising results. This research underscores the importance of adapting traditional assurance principles to assess ML models, ultimately enhancing the safety and reliability of healthcare technologies. Our code is available at https: //github.com/willpoulett/MUBA_pipeline.
اللغةen
الناشرIEEE
الموضوعAdversarial machine learning
Contrastive Learning
Risk assessment
Boundary analysis
Boundary testing
Error prones
Healthcare technology
Image Classifiers
Learn+
Machine learning models
Machine-learning
Patient health
Software assurance
Health risks
العنوانMedisure: Towards Assuring Machine Learning-Based Medical Image Classifiers Using Mixup Boundary Analysis
النوعConference paper
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة