• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Encrypted Inference in Deep Learning: A Pathway to Secure Misinformation Detection

    عرض / فتح
    Robust_Encrypted_Inference_in_Deep_Learning_A_Pathway_to_Secure_Misinformation_Detection.pdf (1.299Mb)
    التاريخ
    2025
    المؤلف
    Ali, Hassan
    Javed, Rana Tallal
    Qayyum, Adnan
    AlGhadhban, Amer
    Alazmi, Meshari
    Alzamil, Ahmad
    Al-Utaibi, Khalid
    Qadir, Junaid
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    To combat the rapid spread of misinformation on social networks, automated misinformation detection systems based on deep neural networks (DNNs) have been developed. However, these tools are often proprietary and lack transparency, which limits their usefulness. Furthermore, privacy concerns limit data sharing by data owners as well as by data-driven misinformationdetection services. Although data encryption techniques can help address privacy concerns in DNN inference, there is a challenge to the seamless integration of these techniques due to the encryption errors induced by cascaded encrypted operations, as well as a mismatch between the tools used for DNNs and cryptography. In this paper, we make two-fold contributions. First, we study the noise bounds of homomorphic encryption (HE) operations as error propagation in DNN layers and derive two properties that, if satisfied by the layer, will considerably reduce the output error.We identify that L2 regularization and sigmoid activation satisfy these properties and validate our hypothesis, for instance, replacing ReLU with sigmoid reduced the output error by 106 x (best case) to 10 x (worst case). Second, we extend the Python encryption library TenSeal by enabling the automatic conversion of a TensorFlow DNN into an encryption-compatible DNN with a few lines of code. These contributions are significant as encryption-friendly DL architectures are sorely needed to close the gap between DL-in-research and DL-in-practice.
    DOI/handle
    http://dx.doi.org/10.1109/TDSC.2024.3447629
    http://hdl.handle.net/10576/66065
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video