عرض بسيط للتسجيلة

المؤلفAl-Maliki, Shawqi
المؤلفBouanani, Faissal El
المؤلفAbdallah, Mohamed
المؤلفQadir, Junaid
المؤلفAl-Fuqaha, Ala
تاريخ الإتاحة2025-07-08T03:58:09Z
تاريخ النشر2024
اسم المنشورIEEE Internet of Things Magazine
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/IOTM.001.2300135
الرقم المعياري الدولي للكتاب25763180
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66067
الملخصData distribution shift is a common problem in machine learning-powered smart city applications where the test data differs from the training data. Augmenting smart city applications with online machine learning models can handle this issue at test time, albeit with high cost and unreliable performance. To overcome this limitation, we propose to endow test-time adaptation (TTA) with a systematic active fine-tuning (SAF) layer that is characterized by three key aspects: a continuity aspect that adapts to ever-present data distribution shifts; intelligence aspect that recognizes the importance of fine-tuning as a distribution-shift-aware process that occurs at the appropriate time to address the recently detected data distribution shifts; and cost-effectiveness aspect that involves budgeted human-machine collaboration to make relabeling cost-effective and practical for diverse smart city applications. Our empirical results show that our proposed approach reduces the misclassification rate of the typical TTA from 0.280 to 0.139, demonstrating its superior performance. Notably, our approach outperforms TTA by a factor of two.
راعي المشروعResearch reported in this publication was supported by the Qatar Research Development and Innovation Council grant # [ARG01-0525- 230348]. The content is solely the responsibility of the authors and does not necessarily represent the official views of Qatar Research Development and Innovation Council.
اللغةen
الناشرIEEE
الموضوعBudget control
Cost effectiveness
E-learning
Machine learning
Data distribution
Fine tuning
High costs
Machine learning models
Machine-learning
Online machines
Performance
Test data
Test time
Training data
Smart city
العنوانAddressing Data Distribution Shifts in Online Machine Learning Powered Smart City Applications Using Augmented Test-Time Adaptation
النوعArticle
الصفحات116-124
رقم العدد4
رقم المجلد7
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة