Addressing Data Distribution Shifts in Online Machine Learning Powered Smart City Applications Using Augmented Test-Time Adaptation
Date
2024Metadata
Show full item recordAbstract
Data distribution shift is a common problem in machine learning-powered smart city applications where the test data differs from the training data. Augmenting smart city applications with online machine learning models can handle this issue at test time, albeit with high cost and unreliable performance. To overcome this limitation, we propose to endow test-time adaptation (TTA) with a systematic active fine-tuning (SAF) layer that is characterized by three key aspects: a continuity aspect that adapts to ever-present data distribution shifts; intelligence aspect that recognizes the importance of fine-tuning as a distribution-shift-aware process that occurs at the appropriate time to address the recently detected data distribution shifts; and cost-effectiveness aspect that involves budgeted human-machine collaboration to make relabeling cost-effective and practical for diverse smart city applications. Our empirical results show that our proposed approach reduces the misclassification rate of the typical TTA from 0.280 to 0.139, demonstrating its superior performance. Notably, our approach outperforms TTA by a factor of two.
Collections
- Computer Science & Engineering [2482 items ]
Related items
Showing items related by title, author, creator and subject.
-
Machine Learning for Healthcare Wearable Devices: The Big Picture
Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ... -
Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence
Mahri, Mohammed; Shen, Nicole; Berrizbeitia, Francisco; Rodan, Rania; Daer, Ammar; Faigan, Matthew; Taqi, Doaa; Wu, Kevin Yang; Ahmadi, Motahareh; Ducret, Maxime; Emami, Elham; Tamimi, Faleh... more authors ... less authors ( Acta Materialia Inc , 2021 , Article)Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic ... -
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Sirinukunwattana, Korsuk; Raza, Shan E Ahmed; Tsang, Yee-Wah; Snead, David R. J.; Cree, Ian A.; Rajpoot, Nasir M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Article)Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches ...