• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CLASEG: advanced multiclassification and segmentation for differential diagnosis of oral lesions using deep learning

    Thumbnail
    عرض / فتح
    s41598-025-03268-1.pdf (2.583Mb)
    التاريخ
    2025-07-02
    المؤلف
    Al-Ali, Afnan
    Hamdi, Ali
    Elshrif, Mohamed
    Isufaj, Keivin
    Shaban, Khaled
    Chauvin, Peter
    Madathil, Sreenath
    Daer, Ammar
    Tamimi, Faleh
    Ba-Hattab, Raidan
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Oral cancer has a high mortality rate primarily due to delayed diagnoses, highlighting the need for early detection of oral lesions. This study presents a novel deep learning framework for multi-class classification-based segmentation, enabling accurate differential diagnosis of 14 common oral lesions—benign, pre-malignant, and malignant—across various mouth locations using photographic images. A dataset of 2,072 clinical images was used to train and validate the model. The proposed framework integrates EfficientNet-B3 for classification and ResNet-101-based Mask R-CNN for segmentation, achieving a classification accuracy of 74.49% and segmentation performance with an average precision (AP50) of 72.18. The gradient-weighted class activation map technique was applied to the model outputs to enable visualization of the specific areas that were most influential for predictive decisions made by the model. This significantly improves upon the state-of-the-art, where previous models achieved lower segmentation accuracy (AP50 < 50%). The framework not only classifies the lesion type but also delineates the lesion boundaries with high precision, which is critical for early detection and differential diagnosis in clinical practice.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105010063633&origin=inward
    DOI/handle
    http://dx.doi.org/10.1038/s41598-025-03268-1
    http://hdl.handle.net/10576/66988
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video