• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The synergistic effect of g-C3N4/GO/CuFe2O4 for efficient sunlight-driven photocatalytic degradation of methylene blue

    View/Open
    Main article (3.344Mb)
    Date
    2025-03-01
    Author
    Tahir, S.
    Zahid, M.
    Hanif, M. A.
    Bhatti, I. A.
    Naqvi, S. A.R.
    Bhatti, H. N.
    Jilani, A.
    Alshareef, S. A.
    El-Sharnouby, M.
    Shahid, I.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In recent years, the dyes discharged from various textile industries have been the main concern of water contamination. With increasing water scarcity problems, it is necessary to synthesize a low-cost, effective visible-light-driven photocatalyst for organic pollutant degradation. In the present study, g-C3N4/GO/CuFe2O4 (CGC) nanocomposite was fabricated successfully through an in situ hydrothermal method to degrade the methylene blue (MB) dye as a model pollutant. The as-synthesized nanocomposites were analyzed by FTIR, XRD, XPS, SEM/EDX, Zeta potential, and UV–Vis spectroscopy. The photocatalytic activity of the novel ternary CGC composite was assessed under sunlight illumination. The impact of numerous photodegradation parameters like pH, photocatalyst dose, H2O2 amount, initial dye concentration (IDC), and contact time were examined. Ternary CGC exhibited higher degradation efficacy at an optimum value of pH (6), H2O2 amount (8 mM), photocatalyst dose (20 mg/100 mL), and IDC (10 ppm) leading to 99% MB degradation within 60 min. The CGC composite exhibited extraordinary photocatalytic performance as compared with those of g-C3N4/CuFe2O4 (CC) and GO/CuFe2O4 (GC) composites. It can be explained by the fact that CuFe2O4 coupled with g-C3N4 and GO results in the effective separation of photoinduced electron–hole pair which causes improved photodegradation efficacy. Furthermore, CGC composite displayed outstanding reusability and is easier to recover after degradation process, which is pertinent to practical application.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200941444&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s13762-024-05929-6
    http://hdl.handle.net/10576/67194
    Collections
    • Atmospheric Science Cluster [‎42‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video