• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unlocking CO2's potential: exploring graphene-based catalysts for sustainable chemicals and fuels production

    Thumbnail
    View/Open
    Unlocking CO2 s potential exploring graphene-based catalysts for sustainable chemicals and fuels production.pdf (4.622Mb)
    Date
    2024
    Author
    Masimukku, Srinivaas
    Lee, Yen-Yi
    Boddula, Rajender
    Agarwal, Aanchal
    Huang, Bo-Wun
    Chang-Chien, Guo-Ping
    Keharika, Kapa
    Pothu, Ramyakrishna
    Al-Qahtani, Noora ()
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Exacerbation of anthropogenic emissions, particularly CO2, poses a peril to our planet. Carbon Capture, Utilization, and Storage (CCUS) technologies offer a promising avenue for combatting climate change by transforming CO2 into valuable resources. Graphene-based materials stand out among the catalysts exhibiting significant potential, owing to their remarkable characteristics such as extensive surface area, superior electrical conductivity, and adjustable surface chemistry, which make them well-suited for CO2 conversion applications. The primary focus lies in the synthesis of C1 chemicals (e.g.: formaldehyde, formic acid, and methanol) and C2 chemicals (e.g.: acetic acid, ethanol, methyl formate, and oxy-methylene-ether) as viable alternative choices. Thus far, elucidating the intricate reaction mechanisms of CO2 conversion, including synthesis, selectivity, and efficacy of heterogeneous catalysts, has been examined by assessing their performance, reaction pathways, and enhancements achieved through the integration of various methodologies such as electro/thermo/bio/photo/photothermal/photoelectro-chemical approaches. Selective utilization of resultant products also emerges as a critical point requiring attention. This comprehensive review serves as a pivotal exploration into the conversion of CO2 into fuels and chemicals, highlighting the significance of designing and synthesizing graphene catalysts using the aforementioned methodologies, thereby underscoring their substantial potential as a crucial technology for advancing sustainable CO2 utilization towards combating climate change.
    DOI/handle
    http://dx.doi.org/10.1080/17518253.2024.2426503
    http://hdl.handle.net/10576/67540
    Collections
    • Center for Advanced Materials Research [‎1633‎ items ]
    • Central Laboratories Unit Research [‎126‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video