عرض بسيط للتسجيلة

المؤلفMansour, Reham
المؤلفAlmaghrbi, Heba A.
المؤلفKumar. S, Udhaya
المؤلفSurendranath, Anju
المؤلفAl Moustafa, Ala-Eddin
المؤلفAlsamman, Alsamman M.
المؤلفZayed, Hatem
المؤلفSaleh, Rawdhah M.
تاريخ الإتاحة2025-10-19T11:14:10Z
تاريخ النشر2025-05-24
اسم المنشورGene
المعرّفhttp://dx.doi.org/10.1016/j.gene.2025.149594
الاقتباسSaleh, R. M., Mansour, R., Almaghrbi, H. A., Surendranath, A., Al Moustafa, A. E., Alsamman, A. M., & Zayed, H. (2025). Transcriptomic profiling and bioinformatics-driven statistical prioritization of CRC biomarkers: a step toward precision oncology. Gene, 964, 149594.
الرقم المعياري الدولي للكتاب0378-1119
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S037811192500383X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68007
الملخصBackgroundColorectal adenocarcinoma (COAD) is among the most common causes of cancer-related death globally. Early detection and targeted therapy depend on identifying key molecular biomarkers that drive tumor progression. The molecular heterogeneity of COAD demands robust computational strategies to improve the accuracy of biomarker discovery. MethodsWe developed and implemented a comprehensive, multi-step bioinformatics and statistical pipeline to systematically prioritize clinically relevant biomarkers in COAD. This pipeline integrated differential gene expression analysis, protein–protein interaction (PPI) network construction, and functional enrichment analysis to identify key hub genes associated with tumor progression. We subsequently applied principal component analysis (PCA) and overall survival modeling to evaluate the diagnostic and prognostic relevance of these candidates. Receiver operating characteristic (ROC) curve analysis was used to assess their sensitivity and specificity. Finally, experimental validation of the prioritized hub genes was conducted via qPCR across three CRC cell lines (LoVo, HCT-116, and HT-29), confirming their upregulation and supporting their clinical potential. ResultsOur integrative pipeline prioritized five key hub genes (CDH3, CXCL1, MMP1, MMP3, and TGFBI) as significantly upregulated in COAD tissues compared to normal controls. Functional enrichment analysis linked these genes to extracellular matrix degradation, epithelial-mesenchymal transition (EMT), inflammatory signaling, and tumor invasion, underscoring their roles in key oncogenic processes. Survival analysis revealed varying degrees of association with patient prognosis, most notably for CXCL1. Diagnostic performance, assessed by ROC analysis, yielded moderate AUC values (0.669–0.692), supporting their potential as biomarkers. Finally, qPCR validation across three CRC cell lines confirmed robust upregulation of all five genes, reinforcing their biological relevance in COAD progression. ConclusionOur study establishes a reproducible, integrative bioinformatics and statistical framework for the systematic identification of clinically actionable biomarkers in CRC. The five hub genes prioritized (CDH3, CXCL1, MMP1, MMP3, and TGFBI) demonstrated consistent diagnostic and prognostic value, offering a solid basis for the development of non-invasive molecular diagnostics and contributing to precision oncology.
راعي المشروعThis work was funded through the Qatar University collaborative grant: QUCG-CHS-20/21-1. Open Access funding provided by the Qatar National Library.
اللغةen
الناشرElsevier
الموضوعColorectal cancer
Transcriptomic biomarkers
Integrative bioinformatics
Molecular signature
Extracellular matrix remodelling
Epithelial-mesenchymal transition
Survival analysis
Computational prioritization
Precision oncology
العنوانTranscriptomic profiling and bioinformatics-driven statistical prioritization of CRC biomarkers: A step toward precision oncology
النوعArticle
رقم المجلد964
Open Access user License http://creativecommons.org/licenses/by/4.0/
ESSN1879-0038
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة