• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Markov decision process model for enhancing resilience in food supply chains during natural disasters

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2949863525000366-main.pdf (7.167Mb)
    Date
    2025-09-30
    Author
    Chen, Mengfei
    Kharbeche, Mohamed
    Haouari, Mohamed
    Guo, Weihong
    Metadata
    Show full item record
    Abstract
    Natural disasters like hurricanes, earthquakes, and floods devastate food supply chains and can threaten food security and public health. These disruptions, from production to consumption, lead to shortages, increased waste, and heightened vulnerability among food-insecure populations. This study addresses the need for effective emergency strategies to ensure food continuity and equity during crises. A Markov Decision Process (MDP)-based model is proposed to enhance food supply chain resilience under disaster conditions. The model involves a two-stage decision-making process: Stage 1 focuses on strategic decisions for immediate response, such as facility reconstruction, and Stage 2 handles tactical decisions during relief efforts, such as transportation routes and product flow. The objective functions of our model include minimizing response time and costs and ensuring equity of food accessibility. A resilience assessment approach is proposed to evaluate the performance of Pareto solutions. The proposed method is applied to the Qatar beef supply chain during a flooding scenario, demonstrating practical effectiveness. Sensitivity analysis is conducted to identify critical thresholds for establishing alternative distribution centers, which helps to optimize responses based on facility capacity. This research improves disaster preparedness and response, ensuring that food supply chains can adapt and recover quickly while enhancing the equity of people’s access to food and nutrition. A case study on Qatar’s beef supply chain under flood conditions shows that the proposed method achieves up to 95 % reduction in response time cost, a 9 % improvement in system resilience, and maintains over 99.5 % food accessibility under severe disruption scenarios.
    URI
    https://www.sciencedirect.com/science/article/pii/S2949863525000366
    DOI/handle
    http://dx.doi.org/10.1016/j.sca.2025.100136
    http://hdl.handle.net/10576/68140
    Collections
    • Mechanical & Industrial Engineering [‎1526‎ items ]
    • Traffic Safety [‎208‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video