• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing Liquefied Natural Gas supply chain robustness through digital twin-driven machine learning models: A special case of cryogenic heat exchanger

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2949908925001785-main.pdf (3.988Mb)
    Date
    2025-11-30
    Author
    Mhiri, Mariem
    Mkacher, Hajer
    Al-Khatib, Maryam
    Kharbeche, Mohamed
    AlNouss, Ahmed
    Haouari, Mohamed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The Liquefied Natural Gas (LNG) supply chain plays a critical role in the global energy sector but remains vulnerable to technical disruptions that compromise operational stability. Equipment failures pose significant risks, leading to production halts and quality degradation. This paper proposes a proof-of-concept resilience-enhancing framework to mitigate minor disruptions that, if left unaddressed, could escalate and impact LNG production continuity. Focusing on the Cryogenic Heat Exchanger (CHE) as a case study, an essential component of liquefaction, the framework integrates digital twins (DT), machine learning (ML), and predictive model to enable real-time monitoring, early failure detection, and proactive mitigation. First, randomly online simulated data on critical parameters (temperature, pressure, and flow rate) is collected using IoT sensors. Next, this data is processed through Aspen HYSYS-based and ML-driven DT to assess the system performance and predict potential failures, respectively. Finally, a Vector Autoregressive model is employed to forecast future operating conditions based on recent observations, capturing system dynamics and correlations. The resulting forecasts will feed the ML model to predict the next operational state. The framework is validated through an extensive computational study on randomly generated scenarios. The results demonstrate that the proposed system monitoring enhances LNG supply chain robustness, achieving early failure detection averaging 57.21% and significant downtime reduction reaching 31.57% on average compared to corrective maintenance strategies. These findings underscore the framework’s potential to improve operational efficiency and stability in LNG production, offering a scalable solution for supply chain robustness.
    URI
    https://www.sciencedirect.com/science/article/pii/S2949908925001785
    DOI/handle
    http://dx.doi.org/10.1016/j.jgsce.2025.205714
    http://hdl.handle.net/10576/68144
    Collections
    • Traffic Safety [‎208‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video