• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic economic dispatch of multi-area wind-solar-thermal power systems with fractional order comprehensive learning differential evolution

    Icon
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360544225018754-main.pdf (30.01Mb)
    Date
    2025-04-21
    Author
    Xiong, Guojiang
    Xu, Shengping
    Suganthan, Ponnuthurai Nagaratnam
    Wang, Yang
    Metadata
    Show full item record
    Abstract
    The significance of multi-area dynamic economic dispatch (MADED) is amplified by the integration of wind and solar energy sources which introduces considerable fluctuations. In this work, a MADED model incorporating wind and solar energy is developed. Weibull and lognormal distributions are employed to characterize their uncertainty, respectively. The over/underestimation technique is then employed to model the uncertainty. To resolve the model, an enhanced variant named FORCL-LSHADE by incorporating refined comprehensive learning (RCL) strategy, fractional order mutation, RCL-based crossover, and RCL-based parameter tuning is presented. FORCL-LSHADE overcomes the premature convergence issues of LSHADE while preserving robust convergence and maintaining population diversity. Comparative results across two MADED systems and a practical system in China, considering scenarios with and without wind and solar, demonstrate that FORCL-LSHADE offers a significant competitive advantage over other algorithms. It achieves cost reductions of 214.64$, 59394.55$, and 2657.10$ in Case (i), and 228.38$, 57045.64$, and 2993.28$ in Case (ii). It also exhibits faster convergence, reaching final solutions at 10 %, 22.5 %, and 70 % of function evaluations in Case (i), and 10 %, 20 %, and 70 % in Case (ii). Its standard deviation is only 4.25 %, 36.87 %, and 44.99 % of LSHADE's in Case (i), and 3.91 %, 34.43 %, and 36.81 % in Case (ii).
    URI
    https://www.sciencedirect.com/science/article/pii/S0360544225018754
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2025.136233
    http://hdl.handle.net/10576/68431
    Collections
    • Interdisciplinary & Smart Design [‎38‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video