• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic economic dispatch of multi-area wind-solar-thermal power systems with fractional order comprehensive learning differential evolution

    Icon
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0360544225018754-main.pdf (30.01Mb)
    التاريخ
    2025-04-21
    المؤلف
    Xiong, Guojiang
    Xu, Shengping
    Suganthan, Ponnuthurai Nagaratnam
    Wang, Yang
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The significance of multi-area dynamic economic dispatch (MADED) is amplified by the integration of wind and solar energy sources which introduces considerable fluctuations. In this work, a MADED model incorporating wind and solar energy is developed. Weibull and lognormal distributions are employed to characterize their uncertainty, respectively. The over/underestimation technique is then employed to model the uncertainty. To resolve the model, an enhanced variant named FORCL-LSHADE by incorporating refined comprehensive learning (RCL) strategy, fractional order mutation, RCL-based crossover, and RCL-based parameter tuning is presented. FORCL-LSHADE overcomes the premature convergence issues of LSHADE while preserving robust convergence and maintaining population diversity. Comparative results across two MADED systems and a practical system in China, considering scenarios with and without wind and solar, demonstrate that FORCL-LSHADE offers a significant competitive advantage over other algorithms. It achieves cost reductions of 214.64$, 59394.55$, and 2657.10$ in Case (i), and 228.38$, 57045.64$, and 2993.28$ in Case (ii). It also exhibits faster convergence, reaching final solutions at 10 %, 22.5 %, and 70 % of function evaluations in Case (i), and 10 %, 20 %, and 70 % in Case (ii). Its standard deviation is only 4.25 %, 36.87 %, and 44.99 % of LSHADE's in Case (i), and 3.91 %, 34.43 %, and 36.81 % in Case (ii).
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S0360544225018754
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2025.136233
    http://hdl.handle.net/10576/68431
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎38‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video