Deciphering Mutational Impacts on c-Src-HK2 Interaction in Colorectal Cancer Progression, and Identification of Potential Phytocompounds Inhibitors: A Molecular Simulation and Free Energy Calculation Approach
| Author | Suleman, Muhammad |
| Author | Khan, Abbas |
| Author | Sayaf, Abrar Mohammad |
| Author | Alghamdi, Abdullah |
| Author | Alghamdi, Suad A. |
| Author | Alissa, Mohammed |
| Author | Alghamdi, Amani |
| Author | Crovella, Sergio |
| Author | Faizullah |
| Available date | 2025-11-12T05:45:17Z |
| Publication Date | 2024 |
| Publication Name | Current Medicinal Chemistry |
| Resource | Scopus |
| Identifier | http://dx.doi.org/10.2174/0109298673311962240815055821 |
| ISSN | 9298673 |
| Abstract | Background: Colorectal cancer (CRC) stands as the third most widespread cancer worldwide in both men and women, witnessing a concerning rise, especially in younger demographics. Abnormal activation of the Non-Receptor Tyrosine Kinase c-Src has been linked to the advancement of several human cancers, including colorectal, breast, lung, and pancreatic ones. The interaction between c-Src and Hexokinase 2 (HK2) triggers enzyme phosphorylation, significantly boosting glycolysis, and ultimately contributing to the development of CRC. Objectives: The objectives of this study are to examine the influence of newly identified mutations on the interaction between c-Src and the HK2 enzyme and to discover potent phytocompounds capable of disrupting this interaction. Methods: In this study, we utilized molecular docking to check the effect of the identified mutation on the binding of c-Src with HK2. Virtual drug screening, MD simulation, and binding free energy were employed to identify potent drugs against the binding interface of c-Src and HK2. Results: Among these mutations, six (W151C, L272P, A296S, A330D, R391H, and P434A) were observed to significantly disrupt the stability of the c-Src structure. Additionally, through molecular docking analysis, we demonstrated that the mutant forms of c-Src exhibited high binding affinities with HK2. The wildtype showed a docking score of -271.80 kcal/mol, while the mutants displayed scores of -280.77 kcal/mol, -369.01 kcal/mol, -324.41 kcal/mol, -362.18 kcal/mol, 266.77 kcal/mol, and -243.28 kcal/mol for W151C, L272P, A296S, A330D, R391H, and P434A respectively. Furthermore, we identified five lead phytocompounds showing strong potential to impede the binding of c-Src with HK2 enzyme, essential for colon cancer progression. These compounds exhibit robust bonding with c-Src with docking scores of -7.37 kcal/mol, -7.26 kcal/mol, -6.88 kcal/mol, -6.81 kcal/mol, and -6.73 kcal/mol. Moreover, these compounds demonstrate dynamic stability, structural compactness, and the lowest residual fluctuation during MD simulation. The binding free energies for the top five hits (-42.44±0.28 kcal/mol, -28.31±0.25 kcal/mol, -34.95±0.44 kcal/mol, -38.92±0.25 kcal/mol, and -30.34±0.27 kcal/mol), further affirm the strong interaction of these drugs with c-Src which might impede the cascade of events that drive the progression of colon cancer. Conclusion: Our findings serve as a promising foundation, paving the way for future discoveries in the fight against colorectal cancer. |
| Sponsor | This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445). The project was partially funded. |
| Language | en |
| Publisher | Bentham Science Publishers |
| Subject | binding energy c-Src colon cancer HK2 MD simulation molecular docking |
| Type | Article |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||
This item appears in the following Collection(s)
-
Laboratory Animal Research Center (Research) [152 items ]

