• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Laboratory Animal Research Center
  • Laboratory Animal Research Center (Research)
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dysregulation of Aquaporin-3 and Glyceryl Glucoside Restoring Action in Hidradenitis Suppurativa in Vitro Models

    Thumbnail
    View/Open
    000720.pdf (1.313Mb)
    Date
    2024
    Author
    Del Vecchio, Cecilia
    Gratton, Rossella
    Nait-Meddour, Cécile
    Nardacchione, Elena Maria
    Moura, Ronald
    Sommella, Eduardo
    Moltrasio, Chiara
    Marzano, Angelo Valerio
    Ura, Blendi
    Mentino, Donatella
    Boniotto, Michele
    d'Adamo, Adamo Pio
    Calamita, Giuseppe
    Crovella, Sergio
    Tricarico, Paola Maura
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    BACKGROUND/AIMS: Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis. METHODS: To evaluate in vitro the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for NCSTN and PSENEN genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies. RESULTS: We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our in vitro model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes. CONCLUSION: Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients .
    DOI/handle
    http://dx.doi.org/10.33594/000000720
    http://hdl.handle.net/10576/68498
    Collections
    • Laboratory Animal Research Center (Research) [‎152‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video