• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing Deep Ensemble Learning for Accurate Melanoma Skin Cancer Classification: Design and Analysis

    عرض / فتح
    Optimizing_Deep_Ensemble_Learning_for_Accurate_Melanoma_Skin_Cancer_Classification_Design_and_Analysis.pdf (1.421Mb)
    التاريخ
    2024
    المؤلف
    Ezeddin, Ezeddin
    Alkhattaf, Ahmet Dia
    Alhafez, Mhd Kheir
    Al-Maadeed, Somaya
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This study evaluates the performance of state-of-The-Art convolutional neural networks (CNNs) for melanoma skin cancer classification, highlighting the selection and optimization of models for ensemble learning. Wide-ResNet101-2 and resnext101-32x8d were identified as the most effective individual models based on their superior diagnostic performance metrics such as accuracy, precision, recall, and F1-score. Leveraging a weighted averaging ensemble approach, the study demonstrates a significant improvement in classification accuracy, achieving an overall accuracy of 96.12%. This advanced ensemble model surpasses traditional single-model approaches, showcasing the potential of integrated architectures in enhancing the precision of medical diagnoses. The results underscore the efficacy of ensemble learning in medical imaging, providing a robust tool for improving the detection and classification of melanoma, thereby aiding in early diagnosis and treatment.
    DOI/handle
    http://dx.doi.org/10.1109/HONET63146.2024.10822955
    http://hdl.handle.net/10576/68973
    المجموعات
    • علوم وهندسة الحاسب [‎2520‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video