• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the impact of stormwater fouling on polysulfone ultrafiltration membranes modified with deep eutectic solvents

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2214714423008826-main.pdf (6.680Mb)
    Date
    2023-12-31
    Author
    Elhamarnah, Yousef
    Hey, Tobias
    Lipnizki, Frank
    Qiblawey, Hazim
    Metadata
    Show full item record
    Abstract
    In this study, we evaluate the performance of modified polysulfone (PSF) ultrafiltration (UF) membranes, which incorporate deep eutectic solvents (DES), in treating stormwater laden with natural organic matter e.g. chemical oxygen demand (COD) and total suspended solids (TSS). We also aim to understand how these organic substances, e.g. COD, TSS, from the water source contribute to the fouling of the synthesized membranes. PSF membranes were synthesized using a non-solvent induced phase separation technique and integrated with varying concentrations of ChCl:FR (Choline Chloride: D-(−)-Fructose) 1:1 DES. The surface and porous structures of the membranes were characterized through Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurements, scanning electron microscopy (SEM), and mechanical testing. The UF performance of these membranes was assessed and compared with different commercially available UF flat sheet membranes in terms of pure water permeability and antifouling behavior against collected stormwater from a sedimentation pond. Furthermore, the study evaluated the quality of the permeate based on parameters such as COD, turbidity, TSS, pH, and conductivity and compared the permeate quality of a pilot-scale ceramic UF membrane unit. The findings indicate that the inclusion of DES in the polysulfone membrane structure enhances the membranes' antifouling properties and permeability. This research offers valuable insights into the role of DES in the formation of polysulfone UF membranes and their potential for practical use e.g. sedimented stormwater.
    URI
    https://www.sciencedirect.com/science/article/pii/S2214714423008826
    DOI/handle
    http://dx.doi.org/10.1016/j.jwpe.2023.104362
    http://hdl.handle.net/10576/69376
    Collections
    • Chemical Engineering [‎1312‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video