عرض بسيط للتسجيلة

المؤلفSalam, Abdus
المؤلفNaznine, Mansura
المؤلفChowdhury, Muhammad E.H.
المؤلفAgzamkhodjaev, Saidanvar
المؤلفTekin, Ali
المؤلفVallasciani, Santiago
المؤلفRamírez-Velázquez, Elias
المؤلفAbbas, Tariq O.
تاريخ الإتاحة2026-01-28T08:39:44Z
تاريخ النشر2025-12-31
اسم المنشورUrology
المعرّفhttp://dx.doi.org/10.1016/j.urology.2025.08.005
الاقتباسSalam, Abdus, Mansura Naznine, Muhammad E. H. Chowdhury, Saidanvar Agzamkhodjaev, Ali Tekin, Santiago Vallasciani, Elias Ramírez-Velázquez, and Tariq O. Abbas. “Hybrid Neural Networks for Precise Hydronephrosis Classification Using Deep Learning.” Urology 206 (2025): 17–24. https://doi.org/10.1016/j.urology.2025.08.005
الرقم المعياري الدولي للكتاب00904295
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0090429525007599
معرّف المصادر الموحدhttp://hdl.handle.net/10576/69541
الملخصObjectiveTo develop and evaluate a deep learning framework for automatic kidney and fluid segmentation in renal ultrasound images, aiming to enhance diagnostic accuracy and reduce variability in hydronephrosis assessment. MethodsA dataset of 1731 renal ultrasound images, annotated by four experienced urologists, was used for model training and evaluation. The proposed framework integrates a DenseNet201 backbone, Feature Pyramid Network (FPN), and Self-Organizing Neural Network (SelfONN) layers to enable multi-scale feature extraction and improve spatial precision. Several architectures were tested under identical conditions to ensure a fair comparison. Segmentation performance was assessed using standard metrics, including the Dice coefficient, precision, and recall. The framework also supported hydronephrosis classification using the fluid-to-kidney area ratio, with a threshold of 0.213 derived from prior literature. ResultsThe model achieved strong segmentation performance for kidneys (Dice: 0.92, precision: 0.93, recall: 0.91) and fluid regions (Dice: 0.89, precision: 0.90, recall: 0.88), outperforming baseline methods. The classification accuracy for detecting hydronephrosis reached 94%, based on the computed fluid-to-kidney ratio. Performance was consistent across varied image qualities, reflecting the robustness of the overall architecture. ConclusionThis study presents an automated, objective pipeline for analyzing renal ultrasound images. The proposed framework supports high segmentation accuracy and reliable classification, facilitating standardized and reproducible hydronephrosis assessment. Future work will focus on model optimization and incorporating explainable AI to enhance clinical integration.
اللغةen
الناشرElsevier
الموضوعdeep learning
renal ultrasound segmentation
hydronephrosis classification
hybrid neural networks
diagnostic imaging accuracy
العنوانHybrid Neural Networks for Precise Hydronephrosis Classification Using Deep Learning
النوعArticle
الصفحات17-24
رقم المجلد206
Open Access user License http://creativecommons.org/licenses/by/4.0/
ESSN1527-9995
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة