• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel virtual patient approach for cross-patient multimodal fusion in enhanced breast cancer detection

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S089561112500196X-main.pdf (3.202Mb)
    التاريخ
    2026-12-08
    المؤلف
    Abdullakutty, Faseela
    Al-Maadeed, Somaya
    Saady, Rafif Al
    Bouridane, Ahmed
    Hamoudi, Rifat
    Akbari, Younes
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Multimodal medical imaging combining conventional imaging modalities such as mammography, ultrasound, and histopathology has shown significant promise for improving breast cancer detection accuracy. However, clinical implementation faces substantial challenges due to incomplete patient-matched multimodal datasets and resource constraints. Traditional approaches require complete imaging workups from individual patients, limiting their practical applicability. This study investigates whether cross-patient multimodal fusion combining imaging modalities from different patients, can provide additional diagnostic information beyond single-modality approaches. We hypothesize that leveraging complementary information from heterogeneous patient populations enhances cancer detection performance, even when modalities originate from separate individuals. We developed a novel virtual patient framework that systematically combines imaging modalities across different patients based on quality-driven selection strategies. Two training paradigms were evaluated: Fixed scenario with 1:1:1 cross-patient combinations (∼250 virtual patients), and Combinatorial scenario with systematic companion selection (∼20,000 virtual patients). Multiple fusion architectures (concatenation, attention, and averaging) were assessed, and we designed a novel co-attention mechanism that enables sophisticated cross-modal interaction through learned attention weights. These fusion networks were evaluated using histopathology (BCSS), mammography, and ultrasound (BUSI) datasets. External validation using the ICIAR2018 BACH Challenge dataset as an alternative histopathology source demonstrated the generalizability of our approach, achieving promising accuracy despite differences in staining protocols and acquisition procedures across institutions. All models were evaluated on consistent fixed test sets to ensure fair comparison. This dataset is well-suited for multiple breast cancer analysis tasks, including detection, segmentation, and Explainable Artificial Intelligence (XAI) applications. Cross-patient multimodal fusion demonstrated significant improvements over single-modality approaches. The best single modality achieved 75.36% accuracy (mammography), while the optimal fusion combination (histopathology-mammography) reached 97.10% accuracy, representing a 21.74 percentage point improvement. Comprehensive quantitative validation through silhouette analysis (score: 0.894) confirms that the observed performance improvements reflect genuine feature space structure rather than visualization artifacts. Cross-patient multimodal fusion demonstrates significant potential for enhancing breast cancer detection, particularly addressing real-world scenarios where complete patient-matched multimodal data is unavailable. This approach represents a paradigm shift toward leveraging heterogeneous information sources for improved diagnostic performance.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S089561112500196X
    DOI/handle
    http://dx.doi.org/10.1016/j.compmedimag.2025.102687
    http://hdl.handle.net/10576/69543
    المجموعات
    • علوم وهندسة الحاسب [‎2520‎ items ]
    • أبحاث الطب [‎2052‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video