• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Embedded Platform for Gas Applications Using Hardware/Software Co-Design and RFID

    Thumbnail
    Date
    2018
    Author
    Ali A.A.S.
    Farhat A.
    Mohamad S.
    Amira A.
    Bensaali F.
    Benammar M.
    Bermak A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper presents the development of a wireless low power reconfigurable self-calibrated multi-sensing platform for gas sensing applications. The proposed electronic nose (EN) system monitors gas temperatures, concentrations, and mixtures wirelessly using the radio-frequency identification (RFID) technology. The EN takes the form of a set of gas and temperature sensors and multiple pattern recognition algorithms implemented on the Zynq system on chip (SoC) platform. The gas and temperature sensors are integrated on a semi-passive RFID tag to reduce the consumed power. Various gas sensors are tested, including an in-house fabricated 4× 4 SnO 2 based sensor and seven commercial Figaro sensors. The data is transmitted to the Zynq based processing unit using a RFID reader, where it is processed using multiple pattern recognition algorithms for dimensionality reduction and classification. Multiple algorithms are explored for optimum performance, including principal component analysis (PCA) and linear discriminant analysis (LDA) for dimensionality reduction while decision tree (DT) and k-nearest neighbors (KNN) are assessed for classification purpose. Different gases are targeted at diverse concentration, including carbon monoxide (CO), ethanol (C 2 H 6 O), carbon dioxide (CO 2 ), propane (C 3 H 8 ), ammonia (NH 3 ), and hydrogen (H 2 ). An accuracy of 100% is achieved in many cases with an overall accuracy above 90% in most scenarios. Finally, the hardware/software heterogeneous solution to implementation PCA, LDA, DT, and KNN on the Zynq SoC shows promising results in terms of resources usage, power consumption, and processing time.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2018.2822711
    http://hdl.handle.net/10576/11977
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video