• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Navi M.
    Meskin N.
    Davoodi M.
    Metadata
    Show full item record
    Abstract
    In this paper, sensor fault detection and isolation of time-varying nonlinear dynamical systems is studied by utilizing an adaptive kernel principal component analysis (KPCA) solution as a useful method to overcome the weaknesses of conventional KPCA approach in dealing with time-varying dynamical processes. Toward this goal, adaptive Hotelling's T2 is used with KPCA to tackle the time-varying behavior of nonlinear systems. Moreover, for fault isolation, partial adaptive KPCA (AKPCA) is proposed where a set of residual signals is generated based on the structured residual set framework. The simulation studies demonstrate that using the proposed methodology, the occurrence of sensor faults in the nonlinear dynamic model of an aeroderivative gas turbine can be effectively detected and isolated in the presence of component degradation. - 2018 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.jprocont.2018.02.002
    http://hdl.handle.net/10576/12175
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video