• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement of electrical and optical performance of N719 by co-sensitization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Shikoh A.S.
    Ahmad Z.
    Touati F.
    Al-Muhtaseb S.A.
    Metadata
    Show full item record
    Abstract
    This paper deals with the electrical, optical and electrochemical properties of a metal-free dye C78H74O8 (AS-2), which has been used to improve the photo-detection properties of C58H86N8O8RuS2 (N719) based Dye sensitized photo-sensors (DSPSs). Both dyes were mixed together in various proportions and the most promising ratio N719/AS-2 (1:0.25) was selected for staining photo-anodes for DSPS integration. The fabricated DSPSs were studied in terms of electrical parameters and photodetection properties. The N719/AS-2 (1:0.25) based DSPS were found to have a reduced leakage current, increased breakdown voltage and a closer proximity to an ideal diode, as compared to the N719 based DSPS. Further, the N719/AS-2 (1:0.25) based DSPS was also found to have better linearity at high irradiance levels, thus rendering the co-sensitized device useful as a photosensor in various applications. Electrochemical Impedance Spectroscopy (EIS) analysis was also performed to explain the interfacial charge recombination process. - 2018 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.optmat.2018.02.030
    http://hdl.handle.net/10576/12177
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video