• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Framework for Vibration Serviceability Assessment of Stadium Grandstands Considering Durations of Vibrations

    Thumbnail
    Date
    2018
    Author
    Do N.T.
    Gul M.
    Abdeljaber O.
    Avci O.
    Metadata
    Show full item record
    Abstract
    Annoying vibrations in grandstand structures have been receiving more attention due to the increasing slenderness of the architectural components and the complexity of the crowd loading for engineers. The vibration serviceability checks under these conditions become a challenge in the design and operation stages. Regarding human comfort, excessive vibrations due to occupant activities may affect comfort and/or cause panic, especially for passive occupants who do not participate in generating excitations. Although durations of excessive vibrations have been considered as one of the most important factors affecting occupant comfort, incorporating the vibration duration in the occupant comfort analysis has not been addressed yet. In addition, the currently available approaches using raw acceleration, weighted RMS acceleration, vibration dose values (VDV), and so on may not always be sufficient for serviceability assessment due to the lack of guided procedure for calculating the integration time and implementing the duration of vibration into the process. Therefore this study proposes a new parameter and framework for assessing human comfort which incorporates the duration of vibration with conventional data processing. The aim is to better examine vibration levels and the corresponding occupant response focusing on grandstand structures. A new parameter, the area of RMS (ARMS), is introduced using the running RMS values of acceleration weighted by the frequency weighting functions. Furthermore, perception ranges for human comfort levels based on the proposed parameter are presented. The experimental study reveals that the proposed framework can successfully address the impact of duration time on determining the levels of vibrations and comfort using the proposed parameter. 2017 American Society of Civil Engineers.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001941
    http://hdl.handle.net/10576/12706
    Collections
    • Civil and Environmental Engineering [‎881‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video