• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides

    Thumbnail
    Date
    2018
    Author
    Zografopoulos D.C.
    Sinatkas G.
    Lotfi E.
    Shahada L.A.
    Swillam M.A.
    Kriezis E.E.
    Beccherelli R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A class of electro-optically tunable metamaterial absorbers is designed and theoretically investigated in the infrared regime towards realizing free-space amplitude modulators. The spacer between a subwavelength metallic stripe grating and a back metal reflector is occupied by a bilayer of indium tin oxide (ITO) and hafnium oxide (HfO 2). The application of a bias voltage across the bilayer induces free-carrier accumulation at the HfO 2/ITO interface that locally modulates the ITO permittivity and drastically modifies the optical response of the absorber owing to the induced epsilon-near-zero (ENZ) effect. The carrier distribution and dynamics are solved via the drift-diffusion model, which is coupled with optical wave propagation studies in a common finite-element method platform. Optimized structures are derived that enable the amplitude modulation of the reflected wave with moderate insertion losses, theoretically infinite extinction ratio, sub-picosecond switching times and low operating voltages. 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s00339-017-1506-0
    http://hdl.handle.net/10576/12727
    Collections
    • Chemistry & Earth Sciences [‎615‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video