• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Common-mode voltage reduction for space vector modulated three- to five-phase indirect matrix converter

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Dabour S.M.
    Abdel-Khalik A.S.
    Ahmed S.
    Massoud A.M.
    Allam S.M.
    Metadata
    Show full item record
    Abstract
    All available Pulse Width Modulation (PWM) techniques employed to different Matrix Converter (MC) topologies generally generate switching Common-Mode Voltage (CMV), which introduces numerous operational concerns in electric drives. Although a body of research for the three-phase case has been undertaken to either reduce or eliminate CMV, corresponding discussions for multiphase MC remain scarce. Interestingly enough, the three- to five-phase (3 � 5) Indirect MC (IMC) is a potential converter topology for five-phase based high power motor drives. In this paper, the different available switching states of a 3 � 5 IMC are classified based on their corresponding CMV levels. Accordingly, two different Space Vector Modulation (SVM) techniques are proposed, which can successfully reduce the peak CMV by 28% and 48%, respectively, when compared with the conventional modulation strategy, while the same maximum Voltage Transfer Ratio (VTR) is preserved. Although the 28% reduction has been alternatively achieved in literature based on carrier-based PWM, the 48% reduction attained in this study represents the maximum achievable reduction for this MC topology. The main concept is firstly introduced; then, both simulations and experiments are used to validate the proposed schemes. 2017 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.ijepes.2017.08.020
    http://hdl.handle.net/10576/12729
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video