• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unipolar Single Reference Multicarrier Sinusoidal Pulse Width Modulation Based 7-level Inverter with Reduced Number of Semiconductor Switches for Renewable Energy Applications

    Thumbnail
    Date
    2018
    Author
    Kiran R.
    Bhaskar M.S.
    Padmanaban S.
    Blaabjerg F.
    Wheeler P.
    Rashid M.H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the present scenario of increasing power demand and depletion of fossil fuel results in the research advancements in the field of renewable energy sources. Among various types of renewable energy sources, photovoltaic related applications are gaining importance. DC-AC converters play a very prominent role in photovoltaic system in efficient power delivering for various applications. This paper proposed a 7-level inverter with reduced number of switches for photovoltaic applications. Unipolar Single Reference Multicarrier Sinusoidal Pulse Width Modulation (U-SR-MC-SPWM) technique is used for the purpose of gate pulse generation for the proposed multilevel inverter. A comparative study of seven-level cascaded multilevel inverter and a proposed multilevel inverter is carried out. Simulation and power quality analyses of both multilevel inverters are performed in MATLAB/Simulink platform version 2016(a). It is noticed that the total harmonic distortion is slightly more of the proposed multilevel inverter when compared with cascaded h-bridge inverter. But, with the reduction in the number of power semiconductor switches in proposed multilevel inverter overall switching power losses, circuit complexity, gate driver requirements and cost of the system can be reduced. The simulation results always show a good agreement with the proposed approach.
    DOI/handle
    http://dx.doi.org/10.1109/EPEPEMC.2018.8521864
    http://hdl.handle.net/10576/12944
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video