• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Grid-Connected Capacitor-Tapped Multimodule Converter for HVDC Applications: Operational Concept and Control

    Thumbnail
    Date
    2018
    Author
    Elserougi A.A.
    Massoud A.M.
    Ahmed S.
    Metadata
    Show full item record
    Abstract
    In this paper, a dc-ac buck converter is proposed as a grid-side converter in high voltage dc (HVdc) transmission systems for high-power renewable energy source grid integration. The proposed architecture consists of multimodules of half-bridge voltage source converters (HB-VSCs). The dc terminals of the HB-VSCs are connected in series across the entire dc link (i.e., capacitor tapped), whereas their ac outputs are connected to multiwinding transformers to provide the three-phase terminals for ac grid integration. The proposed grid-connected capacitor-tapped multimodule converter (CT-MC) architecture, inspired from the HVdc shunt tap proposed by ABB, provides a dc-ac conversion with a relatively moderate voltage rating of semiconductor devices. It also provides operation with a lower number of semiconductor devices, gate driver circuits, voltage sensors, and lower total MVA rating of semiconductor devices (67%) compared with the conventional three-phase HB modular multilevel converter, which positively affects the system cost and reduces the computational burden of the employed controller. In this paper, the operational concept and control of the CT-MC are presented along with a capacitor voltage balancing approach. Simulation results are presented during normal and abnormal conditions to show the viability of the proposed architecture. Finally, a scaled down prototype for the CT-MC is employed to validate the converter operation.
    DOI/handle
    http://dx.doi.org/10.1109/TIA.2017.2788398
    http://hdl.handle.net/10576/13198
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video