• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic Sleep Arousal Detection Using State Distance Analysis in Phase Space

    Thumbnail
    Date
    2018
    Author
    Zabihi M.
    Rad A.B.
    Sarkka S.
    Kiranyaz S.
    Katsaggelos A.K.
    Gabbouj M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Defective sleep arousal can contribute to significant sleep-related injuries and affect the quality of life. Investigating the arousal process is a challenging task as most of such events may be associated with subtle electrophysiological indications. Thus, developing an accurate model is an essential step toward the diagnosis and assessment of arousals. Here we introduce a novel approach for automatic arousal detection inspired by the states' recurrences in nonlinear dynamics. We first show how the states distance matrices of a complex system can be reconstructed to decrease the effect of false neighbors. Then, we use a convolutional neural network for probing the correlated structures inside the distance matrices with the arousal occurrences. Contrary to earlier studies in the literature, the proposed approach focuses on the dynamic behavior of polysomnography recordings rather than frequency analysis. The proposed approach is evaluated on the training dataset in a 3-fold cross-validation scheme and achieved an average of 19.20% and 78.57% for the area under the precision-recall (AUPRC) and area under the ROC curves, respectively. The overall AUPRC on the unseen test dataset is 19%. ? 2018 Creative Commons Attribution.
    DOI/handle
    http://dx.doi.org/10.22489/CinC.2018.257
    http://hdl.handle.net/10576/13203
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video