• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification for Imperfect EEG Epileptic Seizure in IoT applications: A Comparative Study

    Thumbnail
    Date
    2018
    Author
    Abualsaud K.
    Mohamed A.
    Khattab T.
    Yaacoub E.
    Hasna M.
    Guizani M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Epileptic seizure detection could be detected through investigating the electroencephalography (EEG), which is deemed to be very important for IoT wearable sensor-based health systems. EEG-based classification is crucial for a wide-range of applications to analyze real-time vital signs using features concerning predefined set of data classes. The aim of this paper is to conduct a comparative study for several classification techniques and demonstrate the effect of uncertainty in the EEG data on the classification accuracy. We define a model for decomposing the EEG using various transformation such as discrete cosine transform, discrete wavelet transform into several sub-bands. After feature extraction, a comparative study to assess the classification algorithms' performance is conducted. In addition, we evaluate their overall accuracy and complexity as performance measures. For this purpose, we use the support vector machine (SVM) and the Artificial Neural Network (ANN). These are chosen as classifier models to study the performance of the obtained features. The discussion will include the evaluation of the classifiers' performance using the EEG-based epileptic seizure data in two categories, noiseless and noisy. In addition, there are some statistical features extracted to characterize the complete EEG data feeding to these two classifiers. A publically available EEG dataset is employed for both normal and epileptic seizure for automatic epileptic seizure detection as a benchmark.
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC.2018.8450279
    http://hdl.handle.net/10576/13231
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video