• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fuzzy SVPWM-based inverter control realisation of grid integrated photovoltaicwind system with fuzzy particle swarm optimisation maximum power point tracking algorithm for a grid-connected PV/wind power generation system: Hardware implementation

    Thumbnail
    Date
    2018
    Author
    Priyadarshi N.
    Padmanaban S.
    Bhaskar M.S.
    Blaabjerg F.
    Sharma A.
    Metadata
    Show full item record
    Abstract
    This research study presents the fuzzy space vector pulse width modulation (FSVPWM) method of current control for three-phase voltage source inverter. The hybrid fuzzy particle swarm optimisation-based maximum power point (MPP) tracking algorithm has been employed to obtain high tracking efficiency as well as optimal MPP under adverse operating states. The FSVPWM technique provides less current harmonic content, fixed switching pattern, protection from over current, low switching losses and able to handle the non-linearities and uncertainties of the photovoltaic-wind grid integrated system. Grid synchronisation with sinusoidal current injection is achieved using the inverter controller. Fuzzy logic controller-based SVPWM controller compensates current error and provides DC-link utilisation with high efficiency. The experimental responses have been validated using MATLAB/Simulink interfaced real-time dSPACE DS 1104 controller. Irrespective of solar irradiance and wind velocity, the proposed hybrid system obeys MPP accurately with high performance. ? The Institution of Engineering and Technology 2018.
    DOI/handle
    http://dx.doi.org/10.1049/iet-epa.2017.0804
    http://hdl.handle.net/10576/13324
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video