• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental and analytical study on strengthening of reinforced concrete T-beams in shear using steel reinforced grout (SRG)

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Wakjira T.G.
    Ebead U.
    Metadata
    Show full item record
    Abstract
    The use of steel reinforced grout (SRG) has emerged as a promising technique for the strengthening and retrofitting of reinforced concrete (RC) structures, however, the experimental evidence on its application for shear-critical RC beams is rather limited. Accordingly, this study focuses on the structural performance of SRG-strengthened RC beams critical in shear. At this aim, an experimental investigation has been conducted on eleven RC T cross-section beams. Eight beams were strengthened with different types of SRG (different for the density, namely 1.57 and 3.14 cords per centimeter) comprised of ultra-high tensile strength steel fabrics, and three, which were unstrengthened, were used as reference specimens. The test parameters investigated were as follows: (a) steel fabric density, (b) bond scheme, and (c) amount of internal shear reinforcement within the critical shear span, SRG/stirrups interaction. The experimental results revealed the high potential of SRG system for the strengthening of shear-critical RC beams. It has significantly improved the shear capacity and deformation characteristics of the strengthened beams. The percentage increase in the load-carrying capacity over the reference beam of up to 71% was observed. In addition, an analytical model based on the simplified modified compression field theory (SMCFT) has been proposed to predict the shear capacity of SRG-strengthened beams. The SMCFT-based model has resulted in an accurate and safe prediction of the shear capacity of the SRG-strengthened beams with an average ratio of Vth/Vex of 0.92 and a standard deviation of 4.07%. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.compositesb.2019.107368
    http://hdl.handle.net/10576/13694
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video