• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Centralized and Distributed Cognitive Relay-Selection Schemes for SWIPT Cognitive Networks

    Thumbnail
    Date
    2019
    Author
    Salama A.M.
    Samy I.
    El Shafie A.
    Mohamed A.
    Khattab T.
    Metadata
    Show full item record
    Abstract
    We investigate the model of a single primary-transceiver pair with multiple secondary-transceiver pairs. The secondary pairs can act as relays for the primary transmitter enabling access to its channel resources. Each secondary user (SU) is assumed to be a radio-frequency energy-harvester node. We formulate a framework that aims at specifying the optimal SU set that operates as relay nodes for the primary user (PU) data message. The set of the SUs is selected such that the SUs total throughput is maximized under a certain quality-of-service (QoS) requirement constraint on the PU target data rate. We propose both centralized and distributed approaches for solving the formulated optimization problems. The centralized approach is based on solving a convex optimization problem at the PU. On the other hand, the distributed approach leverages a Sackelberg game where all users interact to achieve the best relay-selection scheme and PU's transmit power. We prove the uniqueness and Nash equilibrium of the considered Stackelberg game, and develop a game-theoretic relay and PU's transmit power selection algorithm. We also introduce a fairness optimization-based scheme (FOBS) that aims at enhancing the fairness among the SUs under our proposed centralized approach. Our simulation results show the efficiency of our proposed schemes in terms of SUs total throughput. - 1972-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TCOMM.2019.2936562
    http://hdl.handle.net/10576/13744
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video